Package: bayess 1.6

bayess: Bayesian Essentials with R

Allows the reenactment of the R programs used in the book Bayesian Essentials with R without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations. Marin J.-M. and Robert C. P. (2014) <doi:10.1007/978-1-4614-8687-9>.

Authors:Jean-Michel Marin [aut, cre], Christian P. Robert [aut]

bayess_1.6.tar.gz
bayess_1.6.zip(r-4.5)bayess_1.6.zip(r-4.4)bayess_1.6.zip(r-4.3)
bayess_1.6.tgz(r-4.4-any)bayess_1.6.tgz(r-4.3-any)
bayess_1.6.tar.gz(r-4.5-noble)bayess_1.6.tar.gz(r-4.4-noble)
bayess_1.6.tgz(r-4.4-emscripten)bayess_1.6.tgz(r-4.3-emscripten)
bayess.pdf |bayess.html
bayess/json (API)

# Install 'bayess' in R:
install.packages('bayess', repos = c('https://jmm34.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jmm34/bayess/issues

Datasets:

On CRAN:

4.01 score 3 stars 68 scripts 321 downloads 42 exports 7 dependencies

Last updated 9 months agofrom:d8c8932076. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:ardipperARllogARmhBayesReggibbsgibbscap1gibbscap2gibbsmeangibbsnormhmflatlogithmflatloglinhmflatprobithmhmmhmmeantemphmnoinflogithmnoinfloglinhmnoinfprobitisinghmisingibbslogitlllogitnoinflpostloglinllloglinnoinflpostMAllogMAmhModChoBayesRegpbinopcapturepdarrochplotmixpottsgibbspottshmprobetprobitllprobitnoinflpostrdirichletreconstructsolbetasumisingthreshtruncnormxneig4

Dependencies:bitopscaToolscombinatgplotsgtoolsKernSmoothmnormt

Readme and manuals

Help Manual

Help pageTopics
Accept-reject algorithm for the open population capture-recapture modelardipper
log-likelihood associated with an AR(p) model defined either through its natural coefficients or through the roots of the associated lag-polynomialARllog
Metropolis-Hastings evaluation of the posterior associated with an AR(p) modelARmh
bank dataset (Chapter 4)bank
Bayesian linear regression outputBayesReg
Pine processionary caterpillar datasetcaterpillar
Non-standardised Licence datasetdatha
DNA sequence of an HIV genomeDnadataset
European Dipper dataseteurodip
Eurostoxx50 exerpt datasetEurostoxx50
Gibbs sampler and Chib's evidence approximation for a generic univariate mixture of normal distributionsgibbs
Gibbs sampler for the two-stage open population capture-recapture modelgibbscap1
Gibbs sampling for the Arnason-Schwarz capture-recapture modelgibbscap2
Gibbs sampler on a mixture posterior distribution with unknown meansgibbsmean
Gibbs sampler for a generic mixture posterior distributiongibbsnorm
Metropolis-Hastings for the logit model under a flat priorhmflatlogit
Metropolis-Hastings for the log-linear model under a flat priorhmflatloglin
Metropolis-Hastings for the probit model under a flat priorhmflatprobit
Estimation of a hidden Markov model with 2 hidden and 4 observed stateshmhmm likej
Metropolis-Hastings with tempering steps for the mean mixture posterior modelhmmeantemp
Metropolis-Hastings for the logit model under a noninformative priorhmnoinflogit
Metropolis-Hastings for the log-linear model under a noninformative priorhmnoinfloglin
Metropolis-Hastings for the probit model under a noninformative priorhmnoinfprobit
Metropolis-Hastings for the Ising modelisinghm
Gibbs sampler for the Ising modelisingibbs
Laiche datasetLaichedata
Log-likelihood of the logit modellogitll
Log of the posterior distribution for the probit model under a noninformative priorlogitnoinflpost
Log of the likelihood of the log-linear modelloglinll
Log of the posterior density for the log-linear model under a noninformative priorloglinnoinflpost
log-likelihood associated with an MA(p) modelMAllog
Metropolis-Hastings evaluation of the posterior associated with an MA(p) modelMAmh
Grey-level image of the Lake of MenteithMenteith
Bayesian model choice procedure for the linear modelModChoBayesReg
Normal datasetnormaldata
Posterior expectation for the binomial capture-recapture modelpbino
Posterior probabilities for the multiple stage capture-recapture modelpcapture
Posterior probabilities for the Darroch modelpdarroch
Graphical representation of a normal mixture log-likelihoodplotmix
Gibbs sampler for the Potts modelpottsgibbs
Metropolis-Hastings sampler for a Potts model with 'ncol' classespottshm
Coverage of the interval (a,b) by the Beta cdfprobet
Log-likelihood of the probit modelprobitll
Log of the posterior density for the probit model under a non-informative modelprobitnoinflpost
Random generator for the Dirichlet distributionrdirichlet
Image reconstruction for the Potts model with six classesreconstruct
Recursive resolution of beta prior calibrationsolbeta
Approximation by path sampling of the normalising constant for the Ising modelsumising
Bound for the accept-reject algorithm in Chapter 5thresh
Random simulator for the truncated normal distributiontruncnorm
Number of neighbours with the same colourxneig4