Package: bayess 1.6
bayess: Bayesian Essentials with R
Allows the reenactment of the R programs used in the book Bayesian Essentials with R without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations. Marin J.-M. and Robert C. P. (2014) <doi:10.1007/978-1-4614-8687-9>.
Authors:
bayess_1.6.tar.gz
bayess_1.6.zip(r-4.5)bayess_1.6.zip(r-4.4)bayess_1.6.zip(r-4.3)
bayess_1.6.tgz(r-4.4-any)bayess_1.6.tgz(r-4.3-any)
bayess_1.6.tar.gz(r-4.5-noble)bayess_1.6.tar.gz(r-4.4-noble)
bayess_1.6.tgz(r-4.4-emscripten)bayess_1.6.tgz(r-4.3-emscripten)
bayess.pdf |bayess.html✨
bayess/json (API)
# Install 'bayess' in R: |
install.packages('bayess', repos = c('https://jmm34.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jmm34/bayess/issues
- Dnadataset - DNA sequence of an HIV genome
- Eurostoxx50 - Eurostoxx50 exerpt dataset
- Laichedata - Laiche dataset
- Menteith - Grey-level image of the Lake of Menteith
- bank - Bank dataset
- caterpillar - Pine processionary caterpillar dataset
- datha - Non-standardised Licence dataset
- eurodip - European Dipper dataset
- normaldata - Normal dataset
Last updated 9 months agofrom:d8c8932076. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | OK | Oct 30 2024 |
R-4.5-linux | OK | Oct 30 2024 |
R-4.4-win | OK | Oct 30 2024 |
R-4.4-mac | OK | Oct 30 2024 |
R-4.3-win | OK | Oct 30 2024 |
R-4.3-mac | OK | Oct 30 2024 |
Exports:ardipperARllogARmhBayesReggibbsgibbscap1gibbscap2gibbsmeangibbsnormhmflatlogithmflatloglinhmflatprobithmhmmhmmeantemphmnoinflogithmnoinfloglinhmnoinfprobitisinghmisingibbslogitlllogitnoinflpostloglinllloglinnoinflpostMAllogMAmhModChoBayesRegpbinopcapturepdarrochplotmixpottsgibbspottshmprobetprobitllprobitnoinflpostrdirichletreconstructsolbetasumisingthreshtruncnormxneig4
Dependencies:bitopscaToolscombinatgplotsgtoolsKernSmoothmnormt